Data Migration Process

To maximize productivity and ensure a clean transition from older applications or systems a unifying data migration strategy is needed, one that enables an enterprise to address its business needs in the best way. SQL View’s enterprise data migration solutions offer both large and small organizations a fast, efficient, and cost-effective way to re-deploy data across hardware platforms, applications, and operating systems. Proper data migration is key in the implementation of a Record Management System as well as a Document Management System. This is to ensure that organisations can achieve high productivity upon system launch. 

Business Drivers

The key issues to identify are:

  • Is there a hard-stop date by which this migration must be complete?
  • What is the impact to the business if the project is not complete by the deadline?
  • What risks do you see with migrating the data (volume, multiple data sources, data quality issues, system access)?
  • How will the project be managed (project manager, team, steering committee) and who has the final say?
  • How will you measure the success of the data migration?



  •  Identify Source and Target systems
  • Have the systems been in production for a period of time?
  • Define any validation rules for data extraction and data load (ie only extract open or active records, all data since 2008)
  • Define error handling (what to do if fields fail, ie fail the entire record or process partial records)
  • Define record ownership in target system(s)
  • Document testing approach
  • Document stakeholders and system owners
  • Identify key risks
  • Define success criteria


Data review and verification

  •  Document data sources, versions, locations, accessibility
  • Define objects and fields to be migrated
  • Size of the data to be migrated
  • Extraction process, tools and resulting format
  • If you are going to do multiple data extractions, can you easily extract data deltas, ie extract for different time periods?
  • Data relationship and dependencies – determine the order of migration
  • Data quality, document any data cleansing and de-duplication required, determine if there needs to be an intermediary data store to make data cleansing easier
  • Data mapping and data transformation
  • Data load estimate


Business and Operational constraints

  •  Document any business constraints (especially if you are dealing with production systems)
  • Rollback impact
  • Communication plan
  • Impact to any support processes
  • Change control
  • Resource availability for source and target systems


Pre-migration test

  •  Pre-migration test with sample data
  • Adjust time lines and tasks based on test

Pulling it all together


  • Migration checklist
  • Success criteria
  • Time required and tasks for:
      • Data extract
      • Data cleansing
      • Data mapping and transformation
      • Data load (Calculate the time involved to migrate the data including any testing and fall back contingencies you need)
  • Customizations or changes required for target system
  • Rollback plan
      • Contingencies and rollback activities
  • Key activities and owners
  • Communication plan